您现在的位置是:首页 > 金融 > 正文

如何分解质因数方法(如何分解因式)

发布时间:2023-06-11 08:15:10来源:

导读 想必现在有很多小伙伴对于如何分解因式方面的知识都比较想要了解,那么今天小好小编就为大家收集了一些关于如何分解因式方面的知识分...

想必现在有很多小伙伴对于如何分解因式方面的知识都比较想要了解,那么今天小好小编就为大家收集了一些关于如何分解因式方面的知识分享给大家,希望大家会喜欢哦。

因式分解的一般步骤是:一提二套三分解

一提:即提公因式,看到因式分解的题目,首先看有没有公因式,若有,则

先提公因式;若没有,则套用公式.

版权归芝士回答治华律网亲从站或原作者所有

二套:即套用公式,在没有公因式的前提下,则套用公式,

常用公式有:a^2-b^2=(a+b)(a-b)

a^2+2ab+b^2=(a+b)^2

a^2-2ab+b^2=(a-b)^2

工所反利命军,次速叫书验族。

十字相乘法:x^2+(a+b)x+ab=(x+a)(x+b)

举例: x^2+5x+6=(x+3)(x+2)

动子定小间关线变系流口油证采单议劳选红。

三分解:即分组分解法.对于四项或四项以上的,一般都采用这种方法

下面主要对分组分解法和其他常见的方法归纳如下.

一、分组分解因式的几种常用方法.

1.按公因式分解

例1 分解因式7x2-3y+xy+21x.

分析:第4项含公因式7x,第3项含公因式y,分组后又有公因式(x-3),

解:原式=(7x2-21x)+(xy-3y)=7x(x-3)+y(x-3)=(x-3)(7x+y).

2.按系数分解

例2 分解因式x3+3x2+3x+9.

分析:第2项和4项的系数之比1:3,把它们按系数分组.

解;原式=(x3+3x2)+(3x+9)=x2(x+3)+3(x+3)=(x+3)(x2+3).

3.按次数分组

例3 分解因式 m2+2m·n-3m-3n+n2.

分析:第5项是二次项,第4项是一次项,按次数分组后能用公式和提取公因式.

解:原式=(m2+2m·n+n2)+(-3m-3n)=(m+n)2-3(m+n)=(m+n)(m+n-3).

4.按乘法公式分组

分析:第4项结合正好是完全平方公式,分组后又与第二项用平方差公式.

5.展开后再分组

例5 分解因式ab(c2+d2)+cd(a2+b2).

分析:将括号展开后再重新分组.

解:原式=abc2+abd2+cda2十cdb2=(abc2+cda2)+(cdb2+abd2)=ac(bc+ad)+bd(bc+ad)=(bc+ad)(ac+bd).

6.拆项后再分组

例6 分解因式x2-y2+4x+2y+3.

分析:把常数拆开后再分组用乘法公式.

解:原式=x2-y2+4x+2y+4-1=(x2+4x+4)+(-y2+2y-1)=(x+2)2-(y-1)2=(x+y+1)(x-y+3).

7.添项后再分组

例7 分解因式x4+4.

分析:上式项数较少,较难分解,可添项后再分组.

解:原式=x4+4x2-4x2+4=(x2+2)2-(2x)2=(x2+2x+2)(x2-2x+2)

二、用换元法进行因式分解

用添加辅助元素的换元思想进行因式分解就是原式繁杂直接分解有困难,通过换元化为简单,从而分步完成.

例8 分解因式(x2+3x-2)(x2+3x+4)-16.

分析:将令y=x2+3x,则原式转化为(y-2)(y+4)-16再分解就简单了.

解:令y=x2+3x,则

原式=(y-2)(y+4)-16=y2+2y-24=(y+6)(y-4).

因此,原式=(x2+3x+6)(x2+3x-4)=(x-1)(x+4)(x2+3x+6).

三、用求根法进行因式分解

例9 分解因式x2+7x+2.

分析:x2+7x+2利用上述各方法皆不好完成,但仍可以分解,可用先求该多项式对应方程的根再分解.

四、用待定系数法分解因式.

例10 分解因式x2+6x-16.

分析:假设能分解,则应分解为两个一次项式的积形式,即(x+b1)(x+b2),将其展开得

x2+(b1+b2)x十b1·b2与x2+6x-16相比较得

b1+b2=6,b1·b2=-16,可得b1,b2即可分解.

解:设x2+6x-16=(x+b1)(x+b2)

则x2+6x-16=x2+(b1+b2)x+b1·b2

∴x2+6x-16=(x-2)(x+8).

本文到此结束,希望对大家有所帮助。

标签:

上一篇
下一篇

最新文章